Visual Jenga: Discovering Object Dependencies via Counterfactual Inpainting
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Figure 1. Visual Jenga: Given an input image (left), we generate a sequence of images, removing one object at a time while keeping the
scene stable. We argue that this new task provides a useful signal to assess the level of grounded scene understanding of vision systems.

See the video on our project page for animated results.
Abstract

This paper proposes a novel scene understanding task
called Visual Jenga. Drawing inspiration from the game
Jenga, the proposed task involves progressively removing
objects from a single image until only the background re-
mains. Just as Jenga players must understand structural
dependencies to maintain tower stability, our task reveals
the intrinsic relationships between scene elements by sys-
tematically exploring which objects can be removed while
preserving scene coherence in both physical and geometric
sense. As a starting point for tackling the Visual Jenga task,
we propose a simple, data-driven, training-free approach
that is surprisingly effective on a range of real-world im-
ages. The principle behind our approach is to utilize the
asymmetry in the pairwise relationships between objects
within a scene and employ a large inpainting model to gen-
erate a set of counterfactuals to quantify the asymmetry.

1. Introduction

Can one truly understand a scene by simply naming the ob-
jects in it? While modern computer vision methods excel at
object detection and semantic segmentation, these capabil-
ities often prove inadequate for practical purposes, such as
vision-guided robot manipulation or truly grounded image
editing. Treating scenes as static collections of isolated ele-
ments, recognition models neglect the critical relationships
between objects that give scenes their intrinsic meaning. In
this paper, we argue that true scene understanding necessi-
tates understanding how objects depend on and interact with

one another within the space of a scene.

Drawing inspiration from the game Jenga', we propose a
novel task: to virtually deconstruct scenes by carefully eras-
ing objects, much like players strategically remove blocks
from a tower while making sure it does not collapse. As
shown in Fig. 1, the goal of Visual Jenga is to progressively
remove objects from a single image, one at a time, such that
the scene always remains “well-formed". Solving this task
reveals the relationships between scene elements by system-
atically exploring which objects can be removed while pre-
serving scene coherence both physically and geometrically.

By framing scene understanding as a sequential decon-
struction task, Visual Jenga allows us to evaluate how ob-
jects relate to and depend on one another: an aspect cen-
tral to scene understanding in humans [8] yet largely over-
looked by current benchmarks. Such understanding is cru-
cial in many practical domains. For instance, the ability to
remove objects without destabilizing a scene is essential for
many robotic manipulation tasks [17, 39]. Preserving phys-
ical scene coherence is also important for realistic image
editing applications.

As a starting point for solving the Visual Jenga task, we
propose a simple, data-driven approach that is surprisingly
effective in a range of real-world scenes without requiring
any explicit physical reasoning. Our approach uses a form
of counterfactual reasoning by asking “what if this object
were removed?” The principle behind our approach is using

!Jenga is derived from the Swahili word “kujenga” meaning “to build”.
There are similar games in other cultures: pick-up sticks, mikado, jonchets,
OUPIOJIBKH, etc.
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Figure 2. Counterfactual Inpainting. Given a pair of objects in an image (here, cat and table), we want to compute which of the two
objects is more dependent on the other. We do this by removing each object in turn (masked images), and use a large inpainting model
to generate [N possible inpaintings for the masked regions (top and bottom rows). The number below each inpainting result is a pairwise
cosine similarity (derived from CLIP and DINO) between it and the object in the original image. The average images (for illustration only)
show that the cat could be replaced by many different objects, while the table remains largely unchanged. This suggests that the table is

supporting the cat.

the asymmetry in the pairwise relationships between objects
within a scene [43].

Consider the cat sitting on a table in Fig. 2. The cat
depends on the table below for structural support, but not
vice versa. If we consider the counterfactual of removing
the table from the image, the cat would require some other
support surface for the scene to remain stable [8]. If, on the
other hand, we remove the cat, the scene is already stable, so
it doesn’t much matter what, if anything, will go in the cat’s
place. To make this intuition quantifiable, we use an off-
the-shelf large image inpainting model to help us estimate
the conditional probabilities of counterfactual images. This
does not require any training and exploits existing knowl-
edge of what constitutes a well-formed scene [8] already
captured in large generative models. As Fig. 2 shows, in-
painting the region occupied by the cat results in a diverse
range of plausible objects that could replace it, whereas
inpainting the table consistently produces similar support
structures for the cat. Averaging these differences over mul-
tiple inpainting passes allows us to quantify this asymmetry
and determine which object should be removed first.

In summary, our contributions are: (1) Visual Jenga
task: a novel scene understanding task that evaluates ob-
ject dependencies through sequential removal, inspired by
counterfactual reasoning. (2) Counterfactual Inpainting ap-
proach: a training-free method that quantifies object depen-
dencies, exploiting asymmetry in object co-occurrences us-
ing large-scale generative inpainting models. We demon-
strate our approach through a quantitative pairwise evalua-
tion as well as qualitative, full-scene decompositions.

2. Related work

At the dawn of computer vision in the 1960s, when per-
ception and action were considered two sides of the same
coin, the grand goal of image understanding was the ability
to reason about the physical scene from an image. Roberts’
BlocksWorld [56], the very first PhD thesis in computer vi-

sion, was all about analyzing object relationships within a
physical scene (made up of simple blocks) so that a robot
could pick up these blocks one-by-one and reassemble them
into a different configuration. Alas, in the 60 years that fol-
lowed, the goal of image understanding has been watered
down to a combination of object detection and semantic
“segmentation” [35], and nowadays, image captioning. In
this section, we will review prior work that considered the
task of scene understanding in its original meaning.

Qualitative 3D scene understanding. Psychologist Irv-
ing Biederman’s classic work on scene perception [8] ar-
gues that the way humans interpret visual scenes goes far
beyond a list of objects or a text description. Biederman
identified several physical and geometric relational con-
straints between scene objects (such as physical support and
occlusion) that must be satisfied for a scene to be well-
formed. Inspired by this, Hoiem et al. focused on in-
corporating Biederman’s constraints into their scene under-
standing systems [24, 29, 30, 59]. Subsequent research
built on this by developing layered scene representations
via layer-wise decomposition [32, 68], object-level deoc-
clusion [42], and multi-layer reasoning [15]. More recently,
physics-aware scene understanding inspired by the original
BlocksWorld [56] has been revisited, both in synthetic set-
tings [37, 39], as well as in attempts to generalize it to real-
world scenes [25, 45, 60].

Counterfactual spatial reasoning. Identifying causal re-
lationships in the real world from observation has been an
open problem in the causal inference community [46]. In
computer vision, Lopez-Paz et al. [43] have considered the
special case of an object causing the presence of another
object using causal disposition as a measure. Goyal et al.
[22] use visual interventions to explain model decisions by
showing how modifying specific image elements alters pre-
dictions. Besserve et al. [5] introduced counterfactual in-
terventions to pinpoint modular components in generative
networks, enabling targeted image editing and causal anal-
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Figure 3. Asymmetric Relationships in Real-World Images. Consider performing two internet image searches: “cup” (left) and “ta-
ble” (middle). Notice that almost all the cups are depicted on top of a table, whereas images of tables rarely contain cups. That is,
P(Table | Cup) > P(Cup | Table). The Venn diagram (right) illustrates how object A (cup) depends on object B (table) for structural
support: observing a table does not guarantee a cup, but observing a cup strongly implies a table (i.e. P(Table | Cup) > P(Cup | Table)).
By leveraging these asymmetric relationships, we can infer object dependencies in a scene from the distributions P(A | B) and P(B | A)

learned from large-scale data.

ysis of internal representations. Zhou et al. [69] evaluates
human responses to synthetic block tower simulations to
understand how people assess physical support relations.
Our work scales up the principles laid by these works to
complex real-world data using large pretrained generative
models. While observational data may only provide statis-
tical co-occurrence information, which is not truly causal,
large-scale models trained on images [2, 26] and videos [4]
show impressive counterfactual modeling capabilities, via
text prompting [9], visual prompting [3], and even simple
classification [38]. The underlying visual understanding of
a well-formed scene in generative models covers a wide
range of attributes, like geometry, materials, lighting and
support, among others [6, 7, 16, 67], and has shown promise
for identifying object segmentation [48] and even amodal
segmentation [50].

Object dependencies and scene graphs. Another at-
tempt at deeper scene understanding is a line of work rep-
resenting a scene as a graph of relations between atomic
units, such as objects. Visual Memex [44], an early work
in this area, treated each object as a node with edges
for visual similarity, spatial co-occurrences, etc. Visual
Genome [36] extended this to object categories using a
large-scale crowd-sourced scene graph, spurring further re-
search [63, 66]. However, these methods focus on 2D rela-
tionships and neglect geometric or physical aspects. Other
efforts factorize images into object-centric latent compo-
nents [11, 18, 19, 23, 51], but they treat objects indepen-
dently, missing interactions and support relations.

Object removal. Prior work has largely focused on eval-
uating the visual quality of object removal, insertion, and
inpainting [12, 61, 70]. Existing benchmarks assess inpaint-
ing quality using standard datasets [14, 40, 41, 65] and mea-
sure object removal performance [47, 58]. However, to our
knowledge, no benchmark explicitly evaluates structural de-
pendencies between objects or validates the correctness of
object removal sequences of all objects in the scene.

3. Visual Jenga task

Visual Jenga task aims to evaluate scene understanding ca-
pabilities beyond passive visual observation, pushing to-
wards physical object interaction understanding [20, 31].
Given a single input image, an algorithm needs to simulate
an “action on the scene” by generating a sequence of images
where it removes one object at a time until only the back-
ground remains while maintaining scene coherency and sta-
bility (Fig. 1). Successfully removing objects without desta-
bilizing the scene demonstrates an understanding of object
dependencies. We next introduce a simple, training-free ap-
proach to the Visual Jenga task that infers removal order
based on object co-occurrence, without relying on any ex-
plicit physical reasoning.

3.1. Dependency as conditional probabilities

Consider the illustrative example on Fig. 3: performing an
Internet image search for “cup” returns many images fea-
turing tables, while a search for “table” rarely shows cups.
This fundamental asymmetry reveals the dependencies be-
tween objects in a scene, and has been used to uncover ob-
ject causal connections [43]. Let A = cup and B = table.
Shown as a Venn diagram in Fig. 3, the asymmetric rela-
tionship can be captured by

P(A|B)< P(B|A) = AdependsonB )

P(A| B)>» P(B|A) = BdependsonA
In our example, P(A | B) is very small (i.e., P(—A | B)
is large), while P(B | A) is very large (i.e., P(-B | A)
is small). This asymmetric relationship uncovers not only
the existence but also the direction of dependency, extend-
ing Reichenbach’s principle of the common cause [21, 55].
Our approach, which compares P(A | B) and P(B | A),
is more practical than the probabilistic theory of causa-
tion [27], that compares P(A | B) with P(A | —B), be-
cause the latter requires counterfactual reasoning about the
removal of B, demanding information beyond object co-
occurrences.
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a) Molmo [13]
Figure 4. Our Pipeline. Given only an input image, (a) we first run Molmo [13] which places a point on each object in the image. (b)
These points then serve as prompts for the Segment-Anything (SAM 2) [54] model to obtain segmentation maps for each object. (c) Given
the object masks, we can now run our Counterfactual Inpainting method on all object candidates to determine their removal order via a
ranking strategy (illustrated in Fig. 2). (d) Finally, we use Firefly [1] to remove objects based on these ranking order.

b) SAM2 [54]

3.2. Counterfactual inpainting method

Generalizing to a real scene with more than two objects,
the conditional probability P(A|B) is replaced by the com-
plete notation P(A|B,rest), where “rest” denotes the re-
mainder of the scene. To estimate this, we start from the fact
that large generative models capture the distribution P(x),
where x is an image that may contain objects of any kind.
For a particular image x = X that contains objects A and
B, we can approximate P(A|B, rest) with P(A|X — A) by
masking out object A and using a large generative model to
inpaint (hole-fill) the region corresponding the mask, given
the rest of the image. Similarly, we obtain P(B|X — B) for
object B. By comparing these two quantities according to
the rules in Eq. (1) as illustrated in Fig. 2, we can infer the
object dependencies purely from co-occurrence statistics.

3.3. Practical details

The above algorithm is simple and principled, but to make it
practical, we need to specify how to: 1) obtain object masks,
2) reliably compute conditional probabilities of inpainted
images, and 3) choose which object to remove first. We
describe our choices below and illustrate them in Fig. 4.
None of these choices should be considered definitive. We
expect them to change as technology matures.

1. Obtaining the object mask. To get object masks in the
scene, we use off-the-shelf models. We first extract object
coordinates using MOLMO [13] (Fig. 4a), and then use these
as prompts for SAM 2 [54] to obtain segmentation maps
without class labels (Fig. 4b).

2. Obtaining reliable conditional probability. Directly
extracting likelihoods from image diffusion models is unre-
liable for two reasons: first, P(A | X — A) for a specific ob-
ject A is noisy; second, diffusion models are not optimized
for likelihood scoring [28, 34]. Therefore, rather than fo-
cusing on a specific instance of A, we consider a semantic
class of A and evaluate the “peakedness” of the distribu-
tion P(A | X — A). We call this measure the diversity
score of A (Fig. 4c). To compute it, we first gather N dif-
ferent inpaintings of A, denoted cfey, for j € [1, N]|, using
Runway’s checkpoint of Stable Diffusion 1.5 [57]. We then
quantify how semantically diverse these IV inpaintings are
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c) See Figure 2

d) Removal with Firefly [1]

using both CLIP [53] and DINO [49] features.
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where CLIPSIM and DINOSIM are cosine similarity over
CLIP and DINO representations (normalized to [0, 1] and
normalized by the segmentation area fraction of the crop),
Corig 18 the original crop. Using either CLIP or DINO alone
works, but having both is more robust (see Table 2).
3. Removing the most “diverse” object. After computing
the diversity scores for all objects in the image, we remove
the object with the highest diversity score first using an off-
the-shelf object remover, Adobe Firefly [1] (Fig. 4d). If
a new object appears (for example because of occlusion)
after an object removal is also included in the ranking by
rerunning the whole pipeline again.

4. Evaluation

Visual Jenga outputs a sequence of images, making human
visual inspection a natural evaluation method. To com-
plement qualitative assessment, we also perform automatic
quantitative evaluation (all eval data provided on the project
webpage). Our evaluation comprises three parts: pair-wise
object ordering (Sec. 4.1), complete scene decomposition
(Sec. 4.2), and comparison to simple heuristics (Sec. 4.3).

4.1. Pair-wise object ordering

To assess object dependency ordering in an automated man-
ner, we test the model’s ability to determine which of two
given objects (specified by masks) should be removed first
when physical constraints dictate a clear order. We created
two test sets:

NYU-v2: We use NYU Depth V2 dataset [59], which
contains 1449 RGBD images of indoor scenes. Using sup-
port relation annotations from Yang et al. [64], we extracted
485 unique images yielding 668 pair-wise comparisons with
unambiguous removal ordering (details in Supp.).

HardParse: Because NYU-v2 dataset has very few ex-
amples of complex object depencencies (e.g. stacks of ob-
jects, hanging/leaning objects), we also produced a more
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Figure 5. Results on diverse images with increasing numbers of objects (top to bottom). Our method produces plausible removal
sequences for both simple stacked setups (first and last rows) and complex indoor scenes. For example, in the second row, the cat is
removed first, followed by the laptop and table at the end. In the fifth row, the napkin is removed after the serving spoons and tray at the
end. In the sixth row, the removal order for a dinner plate is: hard-wheat rolls (baati), lentil soup, sauce, spoon, and finally the plate (note
that our method even removes the lentil soup). In the second-last row, note that one of three glasses is removed before the last book, which

is also correct, resulting in a physically plausible sequence. For ease of visualization, we show yellow markers to highlight the object that
is removed next.
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Figure 6. Removal sequence of a breakfast table on a balcony generated by our pipeline. Our method can accurately rank partially
occluded objects, as well as a busy breakfast table setup, by sequentially removing all items. Note that new objects, such as a plate behind
the basket due to occlusion, may also be introduced after an object is removed and are treated normally by our pipeline.
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Figure 7. Removal sequence generated by our pipeline for an outdoor scene. Smaller objects on the table are cleared before the table
itself. Additionally, the bicycles are taken away before the stone wall, which they are leaning against.

difficult HardParse dataset. Using keywords such as “messy
desk,” “messy room,” and “stacked objects,” we curated a
test set of 40 challenging object pairs from 40 unique inter-
net images, where human experts provided instance-level
segmentations and non-trivial removal ordering.

Results: On the NYU-v2, our method correctly deter-
mined the removal order 610 of 668 pair-wise comparisons
(91.32% accuracy, chance is 50%). For the 40 HardParse
pairs, our method correctly identified 28 out of 40 pair-wise
comparisons (70% accuracy, chance is 50%).

4.2. Full Scene Decomposition

While the pair-wise comparison is easy to automate, it
doesn’t actually model the full sequential Visual Jenga task.
Therefore, we also perform a qualitative evaluation of full
scene decomposition sequences. Given that scene segmen-
tation is underdefined, e.g., segmenting a single piece of
paper vs. segmenting a whole pile of papers, we require hu-
man evaluators to perform post-hoc assessments of the re-
sulting scene decomposition sequences for overall physical
plausibility and geometric coherence. To this end, we fur-
ther collected another 56 unique scenes, including both our
own photography and internet images, using a similar proto-
col to HardParse. For each of these scenes, we perform se-
quential object removal until only the background remains,

Table 1. Algorithm evaluation and baseline comparisons.

Dataset Pair-wise Comparison Full Scene
Method NYU-v2 [59] HardParse | Decomposition
Top-to-Bottom 59.14% 52.25% 41.07%
Small-to-Large 90.12% 50% 42.85%
Front-to-Back 37.57% 52.5% 8.92%
Ours 91.32% 65 % 71.43%

and the human evaluator scores the whole sequences as
"pass" or "fail".

Results: Our method achieves 71.43% success (40/56
scenes) on full decomposition. Fig. 5 shows varying ob-
ject counts, while Fig. 6, Fig. 7, and Fig. 9 show complex
decompositions—including a breakfast table, an outdoor
scene, and an office table, where our method successfully
removes all objects (see Supp. for more results).

4.3. Comparison to simple heuristics

Given that captured visual data is often biased, we can con-
sider how three simple object ordering heuristics perform
on the Visual Jenga task. We can simply keep removing
the smallest object in the scene (small-to-large heuristic),
keep removing the top-most object in the image (top-to-
bottom heuristic), or, with the use of single-view depth esti-
mation [33], keep removing the closest object in the scene.
As shown in Tab. 1 and in Fig. 8, these heuristics per-
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Figure 8. Comparison against simple heuristics. Simple heuristics, such as front-to-back ordering (top row; removes table before the
cup), small-to-large ordering (second row; removes newspaper before the cup), and top-to-bottom ordering (third row; removes table before
the newspaper) can sometimes work, but fail for complex real-world scenes. In contrast, our pipeline (bottom row) removes objects in a
physically and semantically coherent order: first the cup, followed by the newspaper, tray table, folded tray table, curtains, floor mat, and

finally the sofa.

form inconsistently across datasets—achieving high accu-
racy in simple scenarios (e.g., NYU-v2) but failing in more
complex settings, especially in challenging datasets such
as complete scene decomposition and pair-wise HardParse.
While our method achieves success in more than 70% of the
cases in complete scene decomposition, the best heuristic
approach, small-to-large, achieves only a 43% success rate,
with front-to-back performing particularly poorly at 8.9%.

4.4. Ablation studies

Diversity score. We compare different ways of qualifying
semantic diversity, CLIP or DINO or both, which is used for
calculating the diversity score. Tab. 2 shows that using both
CLIP and DINO together gives substantially better perfor-
mance especially on HardParse. Note that HardParse was
never used for hyperparameters selection.

Effect of the number of inpainting samples. The larger
number of inpaintings (V) helps better capture the distri-
bution of possible scene completions and monotonically in-
creases the performance, but with diminishing returns be-
yond N = 8 (see Supp.). We used N = 16 by default.

5. Discussion

In this paper, we define Visual Jenga as a purely visual
task: both the input and the outputs are images. While a

Table 2. Diversity score ablation: CLIP vs. DINO.

Method Dataset NYU-v2 | HardParse
Ours (w/o DINO) 89.52% 55%
Ours (w/o CLIP) 90.27% 57.5%
Ours (full) 91.32% 65%

text-output version of our task is conceivable, one needs to
be aware that it could enable shortcut solutions that don’t
require actual image understanding. Text outputs like “re-
move the book on the table" do not localize objects, and as
demonstrated by Xiao et al. [62], text-based visual question-
answering systems often produce plausible-sounding an-
swers without properly grounding them in visual evidence.
For Visual Jenga to meaningfully assess physical under-
standing, outputs must demonstrate precise spatial reason-
ing, which is difficult to achieve in a purely textual do-
main. We did experiment with running several Large Vi-
sion/Language Models on our task, followed by tools like
InstructPix2pix [9] and DALL-E, to generate scene decom-
positions. While the LVMs often produced good textual de-
scriptions of removal order, but we found the final visual
results to be largely unusable (see Appendix G).

While our counterfactual inpainting approach reveals
how generative models capture object support dependen-
cies, it has limitations. The current approach is slow, re-
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Figure 9. Emptying an entire office room. Our method accurately removes all objects from a complex arrangement, reliably removing
items such as the carpet mat under the table and books from the bookshelf before removing the bookshelf itself, while preserving physical

plausibility. Better viewed in our animated video included in Supp.

quiring multiple inpainting passes per object, and produces
only a sequential removal order; unlike humans, who can
envision multiple plausible removal strategies simultane-
ously. Our method relies on Molmo and SAM for object
detection and fails when any of these models fail (Fig. 10).
Rather than using a pipeline, it might be fruitful to investi-
gate an end-to-end approach, where counterfactual reason-
ing is used for both, object segmentation [48] as well as
scene parsing. Moreover, our approach lacks explicit physi-
cal reasoning, relying solely on statistical co-occurrences. It
might be valuable to compare with methods that incorporate
physical and causal reasoning — such as modeling inter-
ventions (P(A | do(—B))) [52] — potentially by leverag-
ing video generative models as world simulators [4, 10]. Fi-
nally, Visual Jenga also raises fundamental questions about
object granularity: should an object be defined as a single
sheet of paper or as an entire stack? Understanding how
generative models internally represent compositional struc-
ture could offer deeper insights into object perception and
reasoning.

Left to right

Firefly fai‘lure

Molmo failure

SAM failure

T—— b <\ =
Figure 10. Failure cases. Our pipeline can fail for several rea-
sons. Top Row: strong shadow cues near an object mislead Firefly,
causing it to reinsert a new object rather than remove it. Middle
Row: our ranking is wrong (indicated by —) because Molmo fails
to identify the third glass, leaving it behind. Bottom Row: SAM
segments only the monitor’s screen (indicated by a red polygon)
rather than the entire monitor, preventing its removal.
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Visual Jenga: Discovering Object Dependencies via Counterfactual Inpainting

Supplementary Material

A. Result compilation video

We provide a result compilation video of Visual Jenga,
showcasing the solutions discovered by our proposed
method across various scenes in the project page.

B. Full dataset availability

All images in our evaluation datasets are provided as HTML
webpages in the project page for comprehensive inspection.
This includes:

1. Full Scene Decomposition dataset: 56 scenes col-
lected both from our own photography and from in-
ternet searches using keywords such as "messy desk",
"messy room", and "stacked objects". For each scene,
we perform sequential object removal until only the
background remains.

2. Pair-wise object ordering dataset:

e NYU-v2: The NYU Depth V2 dataset contains 1449
original images. Using support relation annotations
from Yang et al. [64], we extracted 485 unique im-
ages yielding 668 pair-wise comparisons with unam-
biguous removal ordering. Due to the limitation of
the class-level (rather than instance-level) support re-
lationship annotations from Yang et al., we carefully
filtered the dataset to only include unambiguous cases.
The original support label annotations from the NYU
Depth V2 dataset are no longer accessible online. De-
spite our best efforts to contact the original authors
and others who had access to the annotations, we were
only able to obtain the data with difficulty. Unfortu-
nately, the knowledge required to interpret and utilize
these labels has been lost over time. Consequently, we
opted to use the alternative annotations provided by
Yang et al.

* HardParse: Because NYU-v2 dataset has very few
examples of complex object dependencies (e.g. stacks
of objects, hanging/leaning objects), we produced a
more difficult dataset of 40 challenging object pairs
from 40 unique internet images. Using keywords such
as "messy desk", "messy room", and "stacked objects",
we curated this test set where human experts provided
instance-level segmentations and non-trivial removal
ordering.

As shown in Figure 11, we provide examples from both
the NYU-v2 and HardParse pair-wise datasets. In these ex-
amples, the model is presented with an image and two seg-
mentation masks (A and B), and must determine which ob-
ject should be removed first. In both cases shown, object A
is correctly identified as the one to remove first.

«/

NYU-v2 image Object A Object B

I m o
l/\\\ u\

Object A Object B

HardParse image

Figure 11. Examples from NYU-v2 and HardParse pair-wise sets.
A model is shown an image and the segmentation masks A and B.
The model determines which object should be removed first. In
both examples, A is removed first.

C. Example of NYU-v2 pair-wise dataset

From left to right: (1) Original RGB image showing a bed-
room scene, (2) Choice A: segmentation mask for the pil-
low, (3) Choice B: segmentation mask for the bed, and (4)
Scene graph representation showing support relationships
obtained from Yang et al. [64]. The scene graph indi-
cates that the pillow is supported by the bed. This exam-
ple demonstrates how we extract unambiguous pair-wise
removal orderings from the annotated support relations in
the dataset. Note that the scene graphs from Yang et al.
are class-level rather than instance-level annotations, which
can be ambiguous in scenes with multiple instances of the
same class. We carefully filter out such ambiguous cases
and only include examples where the support relationship
is unambiguous. Note that the model is provided with only
(1), (2), and (3), not the scene graph (4), and must make the
decision between removing choice A (pillow) versus choice
B (bed) first.

D. Inpainting detials

All crops are square-shaped, resized to 224 x 224 as re-
quired by CLIP and DINO, and zero-valued outside the seg-
mentation area. Note that this measure only requires an in-
painting model, not necessarily a text-to-image model. We
make the best efforts to reduce textual biases in a T2I model
with a generic prompt “Full HD, 4K, high quality, high
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resolution, photorealistic". We use the following generic,
widely-used, negative prompt: “bad anatomy, bad propor-
tions, blurry, cropped, deformed, disfigured, duplicate, er-
ror, extra limbs, gross proportions, jpeg artifacts, long neck,
low quality, lowres, malformed, morbid, mutated, muti-
lated, out of frame, ugly, worst quality”.

E. Ablation on the similarity metrics

In addition to the quantitative results provided in Tab. 2, we
also present qualitative ablation for using both CLIP and
DINO scores for our ranking. In Fig. 13, we show the re-
moval sequence when not using the CLIP scores, and in
Fig. 14, we show the removal sequence when not using the
DINO scores. The combination of both CLIP and DINO
together gives substantially better performance, particularly
on HardParse. Since HardParse was used for hyperparam-
eter selection, this suggests that our decision choices are
generalizable across scene types.

F. Ablation on the number of inpainting sam-
ples

The larger number of inpaintings (V) helps better capture
the distribution of possible scene completions and mono-
tonically increases the performance, but with diminishing
returns beyond N = 8. We used N = 16 by default. The
performance on HardParse across different values of N is
shown in the following table:

N=2 N=4 N=8 N=16
50% 50%  62.5% 65%

G. VLM baselines

We explore VLM-based solutions for Visual Jenga, noting
that VLMs don’t directly output image sequences. As dis-
cussed in the main text, purely text-based solutions risk en-
abling shortcuts without true image understanding, as text
outputs like "remove the book on the table" lack precise ob-
ject localization and spatial reasoning [62]. We propose in-

tegrating ChatGPT 40 (November 2024) as a strong VLM

baseline through three pipelines:

1. ChatGPT + DALLE: Direct image to image sequence
generation as described in Sec. G.1.

2. ChatGPT + InstructPix2Pix [9]: Image to image edit-
ing with text prompts like "Remove <object>" as de-
scribed in Sec. G.2.

3. ChatGPT + Molmo + SAM + Adobe Firefly [13]:
Translates text to visual outputs through object localiza-
tion and segmentation as described in Sec. G.3, offering
a similar pipeline to ours.

(b) Dumpling: Variance in Dumpling’s replaceability is high with many
different object types and hence it is removed first.

(c) Soup in the bowl: The soup in the bowl can be replaced with many
different soups, curd, milk, or other fluid types. But based on our scoring
it is the second choice for removmg

(e) Plate has vert limited replacements possible and hence it is the last thing
that is removed from the scene.

Figure 12. Visualization of object replaceability through multiple
inpainting variations. The original object (a) and three different
inpainting results (b-d) demonstrate the range of possible replace-
ments while maintaining scene coherence. Higher visual diversity
in replacements indicates greater replaceability.

Through extensive experimentation with different text
prompts, we found that ChatGPT generally identifies cor-
rect object removal orders when interpreted by humans.
However, these textual descriptions can still be ambiguous
when translated into precise spatial locations. The key dis-
tinction is that our vision-based approach works directly on
object segments, while the VLM methods must first trans-
late textual outputs into spatial locations on the scene.



Figure 13. Ablation: without using CLIP scores. In the top section, we show the removal sequence without using CLIP scores. In the
bottom section, we show the results when both DINO and CLIP scores are used. We observe that DINO tends to favor smaller objects.
When CLIP scores are not included, the ordering can be incorrect.

Figure 14. Ablation: without using DINO scores. In the top section, we show the removal sequence without using DINO scores. In the
bottom section, we show the results when both DINO and CLIP scores are used. We observe that CLIP tends to overlook thin structures.
When scoring between the crops, it still recognizes the spoon on top and assigns a high similarity score, which leads to the napkin being
removed first.

G.1. ChatGPT + DALLE To proceed with the removal and generation of
the updated image, I'll analyze the image for ob-

ChatGPT Prompt jects that are not structurally essential (like chairs

or desks), aren’t load-bearing, and whose absence

won’t disrupt the balance of the scene. Let’s be-
gin.

“Look at the image I gave. Find object to remove
such that after removed the stability of the scene is
maintained. The scene is stable if we hypothetically
play the scene forward in time, the scene still main- <generated image (see Fig. 17b>
tains the same configuration. Then, use your image
generation capabilities and give me the image after
the object is removed."

Here is the updated image with the clutter re-
moved from the floor while maintaining the sta-
bility and overall configuration of the scene.

See the results in Fig. 17. Input image 1—Output 2:

Input image 1—QOutput 1: . .
<generated image (see Fig. 17¢)>

Based on your request, I will identify an object in Here is the updated image with the specified ob-
the scene that can be removed while maintaining ject removed while maintaining the stability and
the stability of the scene. Then, I’ll generate an aesthetics of the scene.

updated image reflecting the removal of the cho-

sen object. Input image 1—Qutput 3:



Ours

Small to Big Removal

<generated image (see Fig. 17d)>

Here is the modified image of the office after re-
moving clutter while maintaining the scene’s sta-
bility.

Input image 2—Qutput 1:

Analyzing the image, it appears that the blue-and-
white napkin is not critical to the structural sta-
bility of the scene and can be removed without
impacting the arrangement of the objects. I will
proceed to generate an image with the napkin re-
moved.

<generated image (see Fig. 17f>

The image has been generated with the napkin re-
moved, maintaining the stability of the scene. Let
me know if there are further adjustments you’d
like!

Input image 2—Output 2:

Based on the image, one object that can be re-
moved to maintain the stability of the scene is the
cloth in the background. It is not directly sup-
porting or interacting with other objects like the
spoons or tray. Removing it will not destabilize
the scene.

Let me generate an image for you with the cloth
removed.

<generated image (see Fig. 17g)>

Here’s the updated image with the cloth removed
for maintaining scene stability. Let me know if
you need further adjustments!

Figure 15. A failure case of a small-to-large heuristic (in the bottom). A heuristic approach may work in a few cases but fails in many other
cases. Ours (in the top) fail on the last removal because strong shadow force to add objects instead of removing them.

Input image 2—Qutput 3:

The image shows three wooden spoons of differ-
ent sizes placed on a surface alongside a napkin.
To maintain the stability of the scene, removing
one of the spoons or the napkin can preserve the
balance since the remaining objects would stay in
place.

I will remove the napkin as it is not critical for the
balance of the scene. Let me generate the updated
image.

<generated image (see Fig. 17h)>

Here is the updated image with the napkin re-
moved while maintaining the stability of the
scene.

G.2. ChatGPT + InstructPix2Pix

ChatGPT prompt: “Give me the sequence order
in which I should remove all objects from the scene
until I am left with the background. Don’t group
objects. Each object should be removed one at a
time and shall not disturb the stability of the other
objects.”

InstructPix2Pix prompt: “Remove <the first ob-
ject>".

See the results in Fig. 18.
Input image 1—ChatGPT output:
For the InstructPix2Pix image, see Fig. 18a.



Figure 16. Failure cases due to (Shadow Residuals). Even when the sequence is correct, strong shadow cues can lead to incomplete
removal. Instead of removing the object, Adobe Firefly responds to these cues and adds a new object instead.

To remove objects one at a time without disturb-
ing the stability of other objects, here’s the sug-
gested sequence of removal:

1. Papers on the desk: Start with the loose pa-
pers on the desk to reduce clutter.

2. Mugs on the desk and side table: Remove
the mugs next, as they are small and easy to
move.

3. Glasses on the desk: Take the glasses off the
desk.

4. Books and files on the desk: Remove these
one by one carefully.

5. Small items (e.g., pens or small electronics)
on the desk.

6. Loose items on the bookshelf: Clear the
items on the shelves, starting from the top
shelf to the bottom shelf, to maintain balance.

7. Chair near the desk (right-hand side):
Move the smaller chair beside the desk.

8. Chair near the side table (left-hand side):
Remove the other smaller chair.

9. Central chair: Move the office chair in the
middle.

10. Rug under the desk: Carefully lift and re-
move the rug.

11. Side table: Remove the side table after clear-
ing all items on it.

12. Desk: Remove the desk after ensuring all
items on and around it are gone.

13. Bookshelf: Carefully move the bookshelf af-
ter everything else is cleared.

By following this order, you’ll remove objects
without compromising the stability of others and
leave only the background view.

Input image 2—ChatGPT output:
For the InstructPix2Pix image, see Fig. 18b.

To remove all objects from the scene without dis-
turbing the stability of the other objects, follow
this sequence:

1. Remove the paper cup (topmost object). This
object is light and does not support any other
objects.

2. Remove the top glass from the stack of
glasses. Carefully lift the glass without dis-
turbing the ones below it.

3. Remove the second glass from the stack.

Remove the third glass from the stack.

5. Remove the fourth glass (bottom-most glass
in the stack).

>



7. Remove the book ‘“Multiple View Geome-
try”’ (blue cover).

8. Remove the book “Vision Science” (black
cover).

This sequence ensures stability as you work your
way from the topmost object to the base.

Input image 3—ChatGPT output:
For the InstructPix2Pix image, see Fig. 18c.

To remove objects one at a time while ensuring
stability, follow this sequence:

1. Smallest spoon on the right - Start with the

e i smallest object, as it does not provide struc-
tural support to other objects.

2. Medium-sized spoon in the middle - Next,
remove the medium-sized spoon, as it is simi-
larly isolated and won’t destabilize anything.

3. Largest spoon on the left - Then remove the
, W largest spoon, as it is freestanding and can be

(c) Output 2 (d) Output 3 removed without affecting the others.

4. Napkin on the top right - Finally, remove the
napkin, as it is flat and won’t interfere with the
background.

5. Tray on the bottom left - End with the tray,
as it forms part of the background base and is
the largest object remaining.

A=

After following this order, you will be left with
only the background.

Input image 4—ChatGPT output:
For the InstructPix2Pix image, see Fig. 18d.

Here is the sequence of removal to ensure the sta-
bility of objects and to avoid disturbing others:

1. Knife (on the cake with sprinkles) - It’s small
and easy to remove without affecting stability.

2. Can of whipped cream (right side) - Free-
standing and easy to pick up.

3. Pink drink in the glass (right side) - Remove
carefully to avoid any spills.

4. Fruit plate (back right, with kiwi and berries)

() Output 2 (h) Output 3 - This is stable and can be picked up without
disturbing others.
Figure 17. ChatGPT + DALLE baseline. Comparison of the 5. Bowl with crumble (back middle, near the
original images and updated scenes with the first object removed. pie) - A lightweight item that is independent.
DALLE doesn’t do a good job at preserving the original image 6. Bowl of chocolates (front right) - Remove
content. carefully as it doesn’t seem to be stacked or

linked to others.
7. Pie (front right in a red dish) - Freestanding
6. Remove the book “The Ministry for the Fu- and can be removed next without disturbing
ture” (yellow cover). others.



8. Cheesecake (middle back, with red topping) -
Positioned safely on its plate, making it stable
to remove next.

9. Cake with sprinkles (front left) - Finally re-
move this large, stable item.

Now you should be left with just the background.

G.3. ChatGPT + Molmo + SAM + Adobe Firefly

ChatGPT Prompt

“Give me the sequence order in which I should re-
move all objects from the scene until I am left with
the background. Don’t group objects. Each object
should be removed one at a time and shall not dis-
turb the stability of the other objects.”

This pipeline is described as follows: First, obtain the re-
moval order from ChatGPT using the prompt from Sec. G.2
above. Second, translate the textual removal order into im-
age segmentation using Molmo to point given the object’s
text description, and then SAM to segment from a point.
Third, remove each object in order using Adobe Firefly
given the object’s segmentation. These steps are important
to turn textual output from ChatGPT into a visual output
expected by Visual Jenga.

This solution can solve all simple cases. However, fail-
ure cases in Fig. 20 suggest that: First, the textual descrip-
tion of the object and its location can be ambiguous which
leads to pointing errors from Molmo. This kind of error
is more likely to happen in a scene with multiple objects
of the same kind as also observed in Fig. 19 (b). Second,
ChatGPT does make mistakes. Finally, we show side by
side comparison with our proposed method showing differ-
ent modes of failures between the two methods in Fig. 19:
our proposed method may suffer from transparent objects,
the ChatGPT method may suffer from ambiguous object de-
scriptions.

Input image 1—ChatGPT output:
For the image sequence, see Fig. 19b (top).

To remove all objects from the scene without dis-
turbing stability, follow this order:

1. Remove the top paper cup gently.

2. Remove the book “The Ministry for the Fu-
ture” (orange book).

3. Remove the book “Multiple View Geome-
try”’ (blue book).

4. Remove the book “Vision Science” (black
book).

5. Sequentially remove each glass cup one at a
time from the stack (there appear to be four
glass cups, so remove them one by one).

Input image InstructPix2Pix output

(a) ChatGPT output. To remove objects one at a time without disturbing
the stability of other objects, here’s the suggested sequence of removal:
1. Papers on the desk ...

VISION SCIENCE

Input image InstructPix2Pix output

(b) ChatGPT output. To remove all objects from the scene without dis-
turbing the stability of the other objects, follow this sequence: 1. Remove
the paper cup (topmost object). . .

Input image InstructPix2Pix output

(c) ChatGPT output. To remove objects one at a time while ensuring
stability, follow this sequence: 1. Smallest spoon on the right ...

InstructPix2Pix output

Input image

(d) ChatGPT output. Here is the sequence of removal to ensure the sta-
bility of objects and to avoid disturbing others: 1. Knife (on the cake with
sprinkles) ...

Figure 18. ChatGPT + InstructPix2Pix. Comparison of the orig-
inal images and updated scenes with the first object removed. In-
structPix2Pix cannot follow the prompt to remove an object in the
image well.



(a) Solutions from our proposed counterfactual inpainting pipeline.

Molmo Molmo
canmot cannot
. . int
point “third “I;(())Llurith
glass from
the stack” glass from
the stack”

(b) Solutions from using VLM (ChatGPT 40) with a similar pipeline (Molmo + SAM + Firefly). For the top row, at the last step, ChatGPT suggests
“Sequentially remove each glass cup one at a time from the stack (there appear to be four glass cups, so remove them one by one)”, which Molmo points
to all of the glass cups effectively removing them all at once. For the second row, after removing the paper cup, ChatGPT suggests: “Remove the top glass
from the stack of glasses”, “Remove the second glass from the stack”, “Remove the third glass from the stack”, and “Remove the fourth glass (bottom-most
glass in the stack)”. Such description can be ambiguous, and Molmo failed to locate the “third” and the “fourth” glasses as shown above.

Figure 19. Comparing our counterfactual inpainting with a VLM-based method (ChatGPT 4o) sharing a similar pipeline. demon-
strates different failure modes from the two approaches. The ChatGPT solution has a bottleneck in coming up with a clear text description
for locating an object which is exacerbated where there are many similar objects, e.g. glasses, in the scene.

This sequence ensures the stability of the objects
as you remove them.

8. Remove the book “Vision Science” (black
cover).

By following this order, you’ll remove objects
without compromising the stability of others and
leave only the background view.

Input image 2—ChatGPT output:
For the image sequence, see Fig. 19b (bottom).

To remove all objects from the scene without dis-
turbing the stability of the other objects, follow
this sequence:

Input image 3—ChatGPT output:
For the image sequence, see Fig. 20 (top).

In the image, there are four stacked tires and a

1. Remove the paper cup (topmost object). wheel. To remove all the objects one at a time

2. Remove the top glass from the stack of glasses. without disturbing the stability of the remaining

3. Remove the se.cond glass from the stack. objects, follow this sequence:

4. Remove the third glass from the stack.

5. Remove the fourth glass (bottom-most glass in 1. Top tire - Remove the tire at the very top of
the stack). the stack first.

6. Remove the book “The Ministry for the Fu- 2. Second tire - Remove the tire directly beneath

ture” (yellow cover).
7. Remove the book “Multiple View Geometry”
(blue cover).

the top tire.
3. Third tire - Remove the next tire in the stack.
4. Bottom tire - Remove the last tire in the stack.



ChatGPT
hallucinates
there is one
more spoon
remaining

Figure 20. Failure Cases from ChatGPT + Molmo + SAM + Adobe Firefly. In the top row, ChatGPT recommends removing the leaning
tire last. Additionally, based on its description, Molmo points to the bottom tire twice, likely due to the word “beneath." In the bottom
row, ChatGPT mistakenly adds an extra spoon, while Molmo indicates the top spoon in the stack. Below are the output suggestions from
ChatGPT for the top row.“In the image, there are four stacked tires and a wheel. To remove all the objects one at a time without disturbing
the stability of the remaining objects, follow this sequence: 1 Top tire—Remove the tire at the very top of the stack first. 2. Second
tire—Remove the tire directly beneath the top tire. 3. Third tire—Remove the next tire in the stack. 4. Bottom tire—Remove the last
tire in the stack. 5. Wheel— Finally, remove the wheel, as it is resting separately and won’t affect the stability of any other objects. This
sequence ensures that the stack’s stability is maintained during the removal process.” Below are the output suggestions from ChatGPT for
the bottom row. “To ensure stability while removing the objects one at a time: 1. Remove the small cylindrical object (bottom right) as it
is not supporting any other object. 2. Remove the wooden spoon leaning at the bottom right diagonally since it overlaps with the others
and is not directly supporting them. 3. Remove the wooden spoon at the bottom left as it supports the least weight in the arrangement. 4.
Remove the spoon on the top left that overlaps minimally with the one left behind. 5. Finally, remove the last spoon resting horizontally
across the center. This sequence ensures stability and minimizes disturbance to the other objects.”

5. Wheel - Finally, remove the wheel, as it is H. Error accumulation from multi-step solu-
resting separately and won’t affect the stabil- tions

ity of any other objects.
Both our proposed solution and the ChatGPT solution in

Sec. G.3 involve multiple steps. Each introduces its own
kind of error which accumulates. At the segmentation stage,
given just a point, segmentation is very much an underde-
termined task, and SAM, the state-of-the-art segmentation
method, is likely to make mistakes. At the object removal
stage, some hard cases involve strong shadows or reflec-
tions which are not considered part of the segmentation in a

This sequence ensures that the stack’s stability is
maintained during the removal process.

Input image 4—ChatGPT output:
For the image sequence, see Fig. 20 (bottom).

To ensure stability while removing the objects
one at a time:

1.

2.

Remove the small cylindrical object (bottom
right) as it is not supporting any other object.
Remove the wooden spoon leaning at the
bottom right diagonally since it overlaps
with the others and is not directly supporting
them.

. Remove the wooden spoon at the bottom left

as it supports the least weight in the arrange-
ment.

Remove the spoon on the top left that over-
laps minimally with the one left behind.

. Finally, remove the last spoon resting hori-

zontally across the center.

This sequence ensures stability and minimizes
disturbance to the other objects.

traditional sense but are quite important for correct removal
as a strong cue gives away the presence of the object which
makes the object removal very hard or impossible. For these
reasons, an end-to-end vision-based solution is highly desir-
able and presents a promising direction for future work.
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